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Signature of dynamical localization in the resonance width distribution
of wave-chaotic dielectric cavities
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We consider the effect of dynamical localization on the widths of the resonances in open wave-chaotic
dielectric cavities. We show that dynamical localization leads to a log-normal distribution of the resonance
widths which scales with the localization length in excellent agreement with the results of numerical calcula-
tions for open rough microcavities.

PACS numbeps): 05.45.Mt, 42.55.Sa, 42.25p

The study of width distributions of finite quantum systemsmentum of the ray in a circular cavity ig=nkR,siny,

weakly coupled to a continuum is a subject of active experiwherek= 2/ is the wave vectofin vacuum andR, is the
mental and theoretical investigation. The nature of the spegugius of the cavity. Hence a ray with angular momentum
trum of resonances depends strongly on the nature of the,~ kR will be strongly trapped whereas one witm

states of the finite system “in isolation.” For example, if <KR, will rapidly escape. Correspondingly, resonant states
those states are ergodically extended and structureless OVelih mean valuegm) > kR, will have small widths, whereas
the system then the resonances will show the behavior e '

pected from random matrix theory, the famous Porteri{hose with mean values less thiaR, will have large widths,

Thomas distribution in the case of a single chanigl A .e., there is a threshold valua,=kR, for strong escape in
close relative of this resonance distribution has been med’:}ngulgr momentum space_“n an undeformedcirculay cav-
sured in quantum dots in the Coulomb blockade regimd® Mis an integral of motion and there are many exponen-
[2,3]. More recently it has been pointed out that optical cavi-iially long-lived “whispering gallery” resonances witm

ties with partially or fully chaotic ray dynamics would have >kRo.

interesting resonance properties and efforts have been made For a generically deformed cavity angular momentum is
to characterize their distribution in various limié—6]. Ina  hot conserved, nor is there any other second constant of mo-
geometry that is approximately translationally invariant intion beyond the energf8]. Hence the angular momentum
one direction the wave equation becomes a scalar equatidi@n fluctuate. The scale of those fluctuations depends on the
with a close formal analogy to the Scllinger equation and existence of Kolmogorov-Arnol'd-Moser tori in phase space,
the physics of the resonance spectrum becomes essentiawpich limit the diffusion in angle of incidence. Beyond some
the same for the optical and quantum systems. We wilFritical value of the deformation these barriers are destroyed
henceforth consider cylindrical dielectric resonators that ar@nd classical rays with initial angular momenta much
translationally invariant along their axis, but can be de-larger thanm. can now diffuse to arbitrarily low angular
formed in their cross section. The analog of the classicamomentum and escape by refract[di As a result, even for
limit of the Schralinger equation is the limit of ray optics kRy>1 the widthT, of rays starting withm>m, is not
when the wavelength of the electromagnetic field is mucrexponentially small, and it can be estimated from the dis-
shorter than the typical radius of the cavity<R,. We will ~ tance to the critical value in angular momentum spdée:
regularly use the term “quantum” to describe properties of =D/(m—m.)?. (HereD is the effective diffusion coefficient
the wave solutions that differ from the behavior of rays in thein phase space, which in principle can dependnon One
same geometry. The motion of a light ray within the cavity ismight then guess that a cavity with such chaotic ray dynam-
identical to that of a point mass in a classical billiard and theics will no longer support any hig resonances. However,
resulting bound states are the analog of the eigenstates Hfis is not necessarily the case, due to the phenomenon of
“quantum billiards” [7]. However, unless the index of re- “dynamical localization”[9]. It is now well known that, just
fraction, n, is taken infinite, none of these states are trulyas a random system exhibits exponential localization in real
bound, there always being some nonzero probability of esspace due to Anderson localization, the same kind of de-
cape from the cavity. Moreover, in the case of a simple di-structive interference can occur in a chaotic dynamical sys-
electric cavity the escape probability is strongly dependentem and suppress diffusion in the relevant phase spi@e

on the angle of incidence of the ray. In particular, rays The condition for the onset of dynamical localization is
bouncing at the cavity’s boundary with an angle of incidencethat the diffusion time across the system be longer than the
x smaller than the critical anglg.=sin"%(1/n) (angles of Heisenberg time defined by the inverse level spacing of the
incidence are defined from the normal to the boungdang  cavity: ty~7%A 1. For longer times thaty,, a wave packet
transmitted by refraction with high probability, while those starts to “resolve” the discreteness of the spectrum and the
with y> x. are trapped by total internal reflection, and canspreading in angular momentum is suppressed. Based on an
escape only with low probability by tunnelingevanescent analogy with the kicked rotat¢f 1], the localization lengtt§
leakage. Semiclassically thgdimensionless angular mo- is determined by the classical diffusion rdde é~D. Con-
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FIG. 2. (Color) Details of the wave intensity corresponding to
the top resonance shown in Fig. 1. The intricate structure of the
wave intensity is due to classically chaotic boundary scattering and
makes the resonance clearly different from a standard whispering-
gallery-like highQ resonance.

nentially longer than the corresponding classical diffusion
time to the classical emission threshold. Thus one has the
possibility of highQ resonances of completely nonclassical,
pseudorandom character, something not considered in the
optics literature to our knowledg@xcept in a very recent
experiment in the microwave reginj&7]). It therefore be-
comes of interest to understand the statistical distribution of
resonance widths in such a situation.

In the localized regime&/L<1, the angular momentum
components of wave functions decay exponentially away
from their centers and one naturally expects exponentially

(b) small average widths for states centered far above the clas-
sical emission thresholthy—m.>¢. Recently Nakel and

FIG. 1. (Color) (a) Intensity plot of a resonance withkR, Stone [4] compared the exact lifetimes of resonances of
=50 in the rough cavity withk=0.08, M=15, andn=2.5. Red  quadrupole-deformed microcavities with the mean classical
color corresponds to the maximum of the intensity, and blue to theiffusion time and found the lifetimes to be significantly
minimum. (b) Intensity plot of a resonance withkR,= 150 for the  longer in certain cases; they conjectured that these discrep-
same set of parameters as above. ancies arose from incipient dynamical localization. Indeed,

dynamical localization has been shown to occur in certain
sider a state centered around an angular momentgsuch  closed cavitie$19,11], and a very recent experimental paper
thatmy—m.<¢. In this case wave packets can escape beforeonfirmed this phenomenon in microwave cavities of similar
their diffusion ceases and the classical picture is adequatshape to those studied beloW7]. However, no detailed
Two different statistical behaviors are possible in this re-study has been made of the statistical and scaling properties
gime. If the escape is determined IBjow diffusion to a  of the resonancéeigenmodg widths in this regime. These
boundary where escape can occur, the level width statisticare the main topics of the current work. Below we will show
has been studied recently by several autid®-14 and that the dynamically localized regime is characterized by a
they find characteristic power-law distributions. Here the dif-very broad(log-norma) width distribution with scaling prop-
fusion constant satisfidls<D<L?, and it takes many colli- erties directly related to the system’s localization length
sions to cross the available phase spdcoethe optical cavi- We stress that the resonance width distribution that we study
ties the role of the system sideis played by 2kR,, the  here is different from the survival probability that was stud-
number of angular momentum states availabhen the ied recently in the dynamically localized regime of a classi-
diffusion constant is largeD ~ L2, the motion is ballistic in  cally chaotic open dynamical systdt8]. The survival prob-
the sense that the phase space is crossed in a few collisiorahility, which is defined as the time it takes a state with well
this situation leads to the Porter-Thomas distribution of resoeefined initial angular momentufand thus not an eigenstate
nance widths and the related distributions mentioned abovef the rough cavity to escape outside, is determined by the
[1,2,15,16. However when dynamical localization domi- quantum-mechanical evolution of a state with a given initial
nates then the lifetime of a localized state centered aroundngular momentum over true resonances of the open system,
angular momenturm, such thaimg—m > £ becomes expo- each of which has a finite width. Assuming that in the local-
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ized regime the resonance width is exponentially small foraccess states with greatly different localization lengths.
resonances located far away from the absorbing boundary, We restrict ourselves to the simplest case of a TM-
the survival probability is found to decay ast Xbr long  polarized electric fielde(r) parallel to the cylinder axis for
timest [18]. These results are consistent with ours below, asvhich both the field and its derivative are continuous at the
we find explicitly an exponential variation of the width with cavity’s boundary. This restriction is primarily for conve-
the distance from the escape threshpdde Eq.(11)], but  nience; the TE modes obey a slightly different scalar equa-
involve a different quantity, measured in a different kind of tion which can be treated in a similar manner. It should be
experiment. mentioned, however, that semiconductor quantum cascade

First, to illustrate the effect of dynamical localization on microcylinder lasers studied ifb] emit solely in the TM
the physical properties of the modes in the open cavity, wenode due to a selection rule. Maxwell's equations reduce
show in Fig. 1 the real-space structure of two modes of ahen to a single scalarwave equation C*ZﬁtzE(r,t)
deformed cylindrical microcavity defined according to the:nZ(r,(ﬁ)va(r,t), where the refraction index satisfies
model described immediately below. The two modes corren(r)=n inside the cavity, ana(r)=1 outside.

spond to exactly the same shape of the cavity, corresponding we use the approach in which the resonances widths in
to fully ergodic classical Ea}/lzdynamms, have the same avefyave vector are given by the imaginary part of the wave
age angular momentugm<)~“~0.5nkRy, but differ in their  vector of the quasiboundstates defined by the following

wave vector, and as a consequefsme belowdiffer in their  matching conditions. First we expand the electric field in the
localization lengths. As a result one resonance is in the quarangular momentum basis £r|),

tum diffusive regime and the other in the localized regime.

The qualitative difference is immediately apparent; the dif- , * ,

fusive mode emits much more strongly and has a denser E(r,)=e ' > imA (kr)e'™?, 1)

spatial structure due to the large angular momentum spread me

in the state. The localized mode, on the other hand, emi

weakly and appears to have a caustic similar to a regular

whispering gallery mode, but a closer look at its spatial apH(nkr)+ BoHo(nkr)  if r<R(¢)

structure shows that the pattern of nodes has an irregular A = N )

character entirely different from the usual whispering gallery YmHm(Kr) otherwise.

modes of circular resonators, as can be seen in Fig. 2. _ ) )
We now define the model corresponding to Figs. 1 and 2, 1HiS expansion corresponds to the so-called Siegert

We consider an optically inactive, cylindrical microcavity bounc_iary condition$21] in which the states have only an

with an index of refractiom>1. The cross section perpen- OUtgoingcomponent at infinity Hy,(x) are Hankel functions

dicular to the cylinder’s axis is given by a circle perturbed by©f the first and second type, respectivielfuch boundary

M harmonics of random amplitude 1//<a,<1//, R(¢) conditions cannot be satisfied for réednd are only satisfied

=Ro[1+2%23/ cos¢’#)]. The average roughness of the for disc;re;zkcoTplekhlt can t;;: sgo;/vn tha;]t thelima%inﬁlry
o — o B parts of thek values that satisfy Eq2) are the poles of the
surface is defined a8=\(«*(4)) 4, «(¢)=(dRdP)/R,. true unitary (on-shel) S matrix of the scattering problem.

This model was introduced by Frahm and Shepelyansky From the expansion coefficients in E&) we define vectors
with the condition of perfectly reflecting walls, and they re- a, B, and y. The fields inside and outside the cavity are
ferred to it as theoughbilliard to contrast with the smoother |10 by the continuity of the field and its derivative on the
quadrupolar deformatl'ons considered byckiel and Sto_ne .poundary andafter integration around the boundagne of
[4]. However, the spatial wavelength of the roughness is stil hese equations can be used to elimingtéeaving a linear

assumed to be large compared to the wavelength of the resQ- _.. . . . i
nance. The advantage of a rough boundary is that the trans%—alémon betweenw and B. The matrix expressing this rela

tion to classical chaos is achieved with much smaller amplifion we call S. Moreover, the regularity of the field at the
tude of deformation making it easier to explore the parameteP!9in =0 impliesa= g, and thus a secular equation for the
regime of fully chaotic classical motion and dynamically lo- FéSonant values dt is obtained of the form

calized "quantum” behavior. As we shall see below, the ~

open rough billiard has scaling and statistical properties es- Sa=a. ©)
sentially identical to those of a quasi-one-dimensional disor- o~ . .

dered system, whereas the quadrupole billiard does not. F§V€ use the notation & matrix” because in the case of a
the rough billiard the classical dynamics can be well approxi_dosed billiard the matrix so defined is aCtuaIIy the Unltsry

mated by a discrete map for which Chirikov's overlap crite-matrix of the scattering problem of a wave incident outside
rion [20] gives an estimate of the critical roughnessabove the impenetrable billiard22,23. In our case the matrix so

. . . . — defined is nonunitary for ang<<e and for realk the eigen-
which the classical dynamics becomes fully chaotickas values ofS have the form, = exti(¢,+i8)], where bothy
~M %2 The two deformation parametekg and « allow ! Gt ok :

. . ! .__andé,>0 are real functions of momentukn The subscript
one to reach a classically fully ergodic regime characterize

by a diffusi d | umbers states in a deformed cavity where angular momen-
y a diffusion constantaveraged over angular momentum v, js not conserved. Exact guantization of the cavity—

D =3(knkRp)? for k> k. and, quantum-mechanically, one solving Eq. (3) exactly—implies\,=1, so that the exact
gets a localization lengt§~D [9] so that the dynamically implementation of this procedure requires finding a complex
localized regime is determined ynkR,<1 [11]. Keeping k=q—iy such thate,(q—iy)=35,(q—iy)=0. The corre-
parameters of the cavity fixed and varyikB, one is able to  sponding resonance widih, is then given byc timesy via

here

)
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the dispersion relationI',=cy. However, approximate

widths can be found by a much more efficient procedure 2t A

which is extremely helpful if one wishes to study full distri- :_a \

butions, as we do here. First, it is straightforward to show % 05

[24] that wheny is small, simply finding the complex eigen- by

phasesh,=ex{di(¢,+i46,)] for real k determines the imagi- — zsf

nary part ofk on resonance by the relation= — 6/ ¢’ where = ool ]
¢’ is the derivative of the real part of the phase with respect ~ A= 1 | v

to momentum for reak. Moreover, since this derivative can
be shown to be slowly varying on the scale of the level
spacingAk, it is not necessary even to quantize the real part
of the phasdi.e., to find the reak that makese(k) =2
Xinteger]. The functionp’ can be easily calculated for the -
circular cylinder, and this relation and the assumption of 0 1 > 3
slow variation of the derivative can be confirmed explicitly p/<p>

(for the case where is smal). Therefore we can generate

large ensembles of widths simply by diagonalizing the ma- FIG. 3. Distribution of the inverse participation ratio for n
trix S for real k and extracting the imaginary phage by =~ =3, M=15, and (kRy,«)=(150,0.02) (solid line), (100,0.03)
which means we generate2nkR, widths per diagonaliza- (dashed ling and (50,0.06)(long-dashed ling «xnkR has been
tion. This procedure is motivated by the work of Doron andkept constant, which results in a stable average IpR=0.1
Frischat, who noted that the statistical properties of closed-0.01. Inset: Normalized correlation function E@) for nkR,
billiards changed little away from the exact quantization con-=100 and«=0.03.

dition (in their case it was the distribution of splittings of

semiclassically degenerate statg®5]. The linear relation fore, for such a resonance in the semiclassical li#A,
betweens, and vy, has been independently proposed earlierand Eq.(4) is appropriate. More details of this formalism can
by HackenbroicH26] and demonstrated for the case of thebe found in[6].

circle. For an exponentially localized state one generally has
To best relate the localization properties of the eigen-

states, which apply to a closed cavity, to the distribution of |m—my|

widths in an open cavity, we employ a perturbative formal- |“m|~eXF< - 2—5 @)

ism that was recently developed specifically to treat open

optical resonator$_6] (it is similar in spirit to weII-knovyn We consider the regime of large localization lenggh
quantum perturbative scattering approaches sukmatrix ~?2k2R§>1. Since the rough billiard is classically chaotic

theory in the single-level approximatiprAccording to that - : .
theory narrow resonance widthis<A (A is the resonance the phasesof the Coeff'c"?”FS“m change rapidly with 'the
angular momentum, and it is natural to assume that its cor-

spacing can be computed from the expectation value of anrelation function satisfies
anti-Hermitian operatol taken over eigenstate}sz(o)) of

the matrix M, which describes some effective “closed cav-
ity,” (al mas),=0mla %/, (8)

) ©) (O)x (0) where the average is performed over an angular momentum
I'=bo(a™|V]a'™)=byg E, am Vo @y - 4 interval /e[my—58/12my+5/12] such that &5/ <¢.
m.m This behavior is illustrated in the inset to Fig. 3 for one

Explicitly, typical set of cavity parameters, corroborating the validity of
the assumptior8).
M=("I)=(IN)I'H"YH H)YHI). (5 As follows from Eq.(6) and the definition o¥, the matrix

elementsV,,,y in angular momentum representation vary on
a scale of5m~?kR0>1, and therefore we can replace the
producta}a,, in Eq.(4) by its average valuéa},a,, ) over
_ jm=/ _ _ the interval [m—m’|~ xkR,. Together with Eq.(8) this
(22) m=— - J dpZ (K)Zny(k) (M9, (6) leads to the diagonal approximation

V is the anti-Hermitian part of1, and the matrix elements
(ZZ) are defined as

nkRy

where Z,,(k) and Z,,(k) stand for eitherH ,(kR(¢)), the Ve~ 2y 9
<a0| |a0> \m;% |am| mm- 9

Bessel functionJ,(nkR(¢)), or their derivatives. The
coefficient by in Eq. (4) depends only on the Hermitian
part Hy of M, i.e., it is determined by the properties The matrix element
of the “closed ?%stem,” by *=(a®|aHy/ ok|a(®)
~3 % (3'3") 1w a'®  and can be regarded as a normal- 1, i—1

ization factor. An eigénnstate localized at angular momentum V=~ g L"H Om AHTHT), 0 (H)) om—c.c)
mo>m.~kR, will have exponentially small width'. There- (10
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includes both the refractiveelassical escape from the reso- tum, corresponding to the classical emission bomdgr is

nator (for |/|,|/’|<m.=kRy) and the “tunneling escape” reached, the wave packet escapes the system and never re-
(corresponding to evanescent leakagd, for |/],|/’|  turns. Hence we may assume that the inverse localization
>m,;). To evaluate the sum over angular momenta we uséngth in our problem has an approximately normal distribu-
the stationary-phase-based technique developg2i7irin the  tion around its meariour ensemble here is of boundary re-
context of the calculation of level splittings in a rough bil- alizations,

liard. The “classical” refraction contribution is found to be

(1 1/gg)?
poss Ko xp( ~Mo™*To kRO) (11) P(g)NeXp( - TZO) ' 9

m0>mC~ n_f &
Therefore, as follows from Eq$11) and (13), the reso-
This result shows that an exponentially small width can benance width is distributed log-normall31],
due to the exponentially small wave function component
leaking outside the classically totally-internally-reflected re-
gion. To see if this process controls the lifetime we need to P(F)d[ln(l“)]~exp< -
compare this result with the direct “tunneling escape” con-
tribution to the lifetime. The latter process involves angular
momenta only above emission threshaoid. For an esti- where
mate, it is then sufficient to evaluate the linewidth of the
state aboven, in the circular cavity, which can be thought of In(I"o) = — (Mo —kRp)/&o (15

as a state with zero localization length. We find that the o ) ) ) )
tunneling contribution is also exponentially smats¢ 1), a}nd the derivation is done in a .Ieadlng logarithm approxima-
tion, so that the preexponential factor in E@.1) is ne-

IN2(T'/T )

207(mo—KRy)? kRO)Z) diin(I) ],

(14)

U ymImiHE - (KRHE (K glected. This result is then very natural: the distribution of
me=m = — (LMIM{Hin 4 (kRo)/Himg(kRo)] widths in open dynamically localized cavities is log-normal
~ext 2/ m2—m2+ 2m- In(m for the resonances localized far from the classical emission
H o e oIn(Me) thresholdmy>kR,. This is entirely analogous to the conduc-
—2mg In(my+ Vym2—m?)]. (12)  tance distribution of localized chains, which will be log-

normal for a fixed distance from the en@8] (see[29] for a

Competition between the classical escfipg. (11)] and the l0g-normal distribution of delay times/resonance widlths
tunneling[Eq. (12)] is strongest for ifi,—m,)/m.<1, i.e., We note that the relationship between dynamical localization
when the width of the tunne”ng barrier is smallest. Compar.and Anderson localization was first placed on firm fOOting in
ing the two contributions in this region we find thEf2ss & seminal paper by Fishman, Grempel, and Prqagg
STUM for ¢ m and U To3ss i the opposite limit. Equation(14) essentially relies on two _assumpnons: first,
Restriction on the range gfweakens as one moves to higher Ed- (8) that the phases of the wave function components are
angular momentum, and fom,—m,)/m.~1 the classical randomly dlstnbutgd with no long-range qorrelat|ons, anq,
escape mechanism always dominates over the tunneling ong€cond, that the eigenstates are exponentially localized with
The tunneling escape, therefore, is relevant only for ver? n_or_mal distribution of Iocallzgtlon lengths. We now test th_e
small deformationsc<(kRy) 3“4 which produce short lo- v_ahdny of th_e;e two assgmptlons for our rough microcavi-
calization length. Thus, the width of the states with verylies- The validity of Eq(8) is confirmed by tzhe sharp drop of
short (essentially zerplocalization length is determined by the correlation function(a}, ne,),/{|a/[%), for m>0,
the tunneling escape, but that of the more extended staté¥hich is clearly seen from the numerical results presented in
with £&>1 by the classical emission from their exponentially the inset to Fig. 3. The localization properties are investi-
weak tails atm,=KkRy. gated by computing the distribution of the inverse participa-
Having established a relation between the width and th&ion ratio (IPR) defined asp=X | ap|*/S | am/®. The IPR
localization length of a corresponding closed cavity, the dis/neasures the inverse number of effective eigenstate compo-
tribution of widths then follows from the distribution of lo- N€nts and thus allows one to distinguish between localized
calization lengths. In one-dimensiondD) and quasi-one- and delocalized states. Generally, in the localized pkase
dimensional disordered systems it is now well establisheds independent of the system size since at miost sites
that the distribution of the inverse localization length is typi- contribute to the sum an¢p)~&*. In the other limit of
cally normally distributed around an average,l[28].  ergodic states, all sites contribute equally gpg~L ~* in
Moreover Frahm and Shepe|yansky have exp||c|t|y showr{his case. Between these two limits, a Variety of behaviors
[11] that the problem of the rough billiard maps onto a vari-may occur depending on the inner structure of the eigen-
ant of the kicked rotor problem and hence to an ensemble g¥tates. In Fig. 3 we show IPR distributions for three different
band random matrice$BRM) [30], which also describe Parameter sets corresponding to the same average localiza-
quasi-1D disordered systems. Here the angular momentution lengthé~ (knkR,)?=9. The three distributions are in-
index plays the role of the site coordinates in disorderedleed stable under parameter variations wkes kept con-
systems, with an ideal leatthe continuum accessible at stant, and this shows that not only the average IPR/
m.=kR,. Collisions with the rough boundary correspond tolocalization length[11] but also the full IPR distribution

random hopping between sites, which are at maskR, obey a one-parameter scaling wikmkR The situation is
lattice spacings apalil]. Once the critical angular momen- very similar to the one studied in R480] for BRM with a
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FIG. 5. Scaling of the average logarithm of resonance width
(InTy) vs (My—kR)/¢* for parameters 95nkR<195, 2.5<n
<5, 0.008<x<0.03, and 16:M<30. Open symbols correspond
and 0.8(triangles. This last distribution is fitted according to Eq. [© the rough deformation for which a one-parameter scaling exists.
(14) with 0~0.04 (dashed ling The emission border is an,  'he full diamonds correspond to a quadrupolar billiakti<2) for
~0.2nkR. Each distribution is constructed from 8000 to 13 000 Which the diffusion is aff(_acte_d by classical invariant structures in
widths obtained from 1013 boundary realizations of the rough cayPhase space. Insgt: Localization length as extracted from the scaling
ity. Inset: Typical localized eigenstate for the same parameter sef'0Wn on the main panel.
The dashed line indicates an exponential decay corresponding to a
localization length o= 16. scaling theory of localization. In this case the Thouless con-

ductanceg=1"/A € is the scaling quantityor its logarithm in

bandwidth kb~ /2¢, for which the IPR distribution was the localized regime herel is the resonance width, aride
analytically computed. Similar deviations as those seen ois the mean level spacing. In our cdse cy (wherevy is the
Fig. 3 are also present for BRM with not too large band-width in momentum spagebut A e differs from the value in
widths [30], so that these numerical results confirm the uni-the corresponding Schdimger equation, due to the different
versality of the dynamically localized regime, quite analo-dispersion relation for the wave equation. Taking this into
gous to quasi-one-dimensional disordered systems. We alszcount one finds that the analog of the dimensionless con-
illustrate this exponential localization by showing one typicalductance isy~n2kcyR2, and it is the logarithm of this di-
state in the inset to Fig. 4. mensionless quantity that we plot against, kR)/£* . Fig-

Having tested the validity of the main assumptions onure 5 allows us to identify the scaling parameg&rwith the
which Eq.(14) relies, we present in Fig. 4 the distribution of |ocalization length up to a free parameter. That this scaling
widths for the classically chaotic, dynamically localized re-holds for the rough cavity demonstrates that the localization
gime of the open rough microcavity. The distributions shownlength is independent of the angular momentum, as is ex-
correspond to resonances centered in intervals of widthected for a homogeneously diffusive system. The situation
om/(nkRy)=0.1 around angular momentan,/(nkRy) is fundamentally different for a quadrupolar cavityl & 2)
=0.5, 0.6, 0.7, and 0.8, well above the classical thresholéis can be seen in Fig. Gee black diamondsObviously,
m./(nkRy)~0.29. Clearly, the distributions are log-normal one scaling parameter is not sufficient to bring the corre-
and their widths increase as one moves away from the clasponding curve on top of the other ones satisfying @§).
sical emission bordem.=kR,. Furthermore, the agreement This indicates an angular momentum dependent diffusion
with Eq. (14) is quantitatively confirmed by a direct fit of the constant, which directly follows from the effective local map
broadest of these distributioiisee dashed line on Fig).4 derived for this particular cag82]. Furthermore, in the re-

We expect by analogy to the scaling theory of localizationgime corresponding to the data presented for the quadrupolar
that the logarithmic average of the widths will exhibit a uni- deformation, small invariant torii and islands of stability still
versal scaling behavior. This expectation is confirmed by th&urvive, resulting in strongly localized wave functions with
data shown in Fig. 5 where we present numerical results foghort localization lengths determined essentially by the size
the scaling obeyed by Iiy. Log-averages for different pa- of the remaining classical structures. Because of this, and
rameter sets have been computed for at least 2000 widths imlike the situation in the rough cavity, the width of such
narrow energy windowsm/(nkRy)=0.2 around given an- states is determined by the tunneling esdae® the discus-
gular momentamy>m, for different values of indices of sion after Eq.(12)]. Therefore a clean demonstration of ex-
refraction 1.5n<4, wavelengths 78nkRy<180, and ponential dynamical localization is difficult in the quadrupo-
roughnesses. All presented results are in the localized re- lar billiard.
gimes £<my—m, and the corresponding curves have been Further confirmation that the extracted scaling parameter
put on top of each other by a one-parameter scaling. Figure | indeed related to the system’s localization properties is
demonstrates the validity of the linear relatiohf), as is ~ given in the inset to Fig. 5 wherg” is plotted against the
indicated by the straight line. The exact parameter deperdiffusion constanD = (xnkR,)? as derived from the effec-
dence of the scaling can be deduced from analogy to thgéve rough map[11]. This inset gives unambiguous confir-

FIG. 4. Distribution of resonance widths far=3.5, nkR

~110, K= 0.018, andM =15 for states with average angular mo-
mentumm,/(nkRy)=0.5 (circles, 0.6 (squares 0.7 (diamond$,
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mation of the above derived relation between localizatiorfurther demonstratedi6], and confirmed numerically. The
length and log-averaged width. Note th&ét has a linear log-normal distribution is a hallmark of localized disordered
dependence on the diffusion constdhteven at smallD  systems and hence our results deepen the analogy between
where the relatiort~D does not hold. For larg®, how-  dynamical and Anderson localization and point out an opti-
ever, the relatiorg* ~ & holds[33]. cal observable that can in principle be measured to demon-
To summarize, we have presented a study of the widthrate this distribution. The possibility of high-resonances
distributions of a quantum-chaotic open system in the dyin deformed rough cavitiewhich are nonetheless smooth
namically localized regime. This study was greatly expeditech, the scale of the wavelengtbhould be of interest in op-

by the linear relation between the complex phases of thgcy) studies of scattering from small particles; however, their
eigenvalues of the nonunitary scattering matrix away frorga

. ; ' andom nature seems to make such resonances unsuitable for
exact quantization and the imaginary part of the correspon spplications.
ing exactly quantized complex wave vector, which has al-
lowed us to generate sufficiently large width statistics to We have benefited from interesting discussions with F.
demonstrate the log-normal form of their distribution. TheBorgonovi, C. Texier, and Y. Fyodorov and would like to
width distribution has been derived analytically assuming ahank G. Maspero for sending us his thesis and A. D. Mirlin
normal distribution of inverse localization lengths and phasdor communicating several interesting references. We ac-
randomness of the wave functions, using a recently deveknowledge the support of the Swiss NSF and NSF Grant No.
oped semiclassical method, the usefulness of which is thuBHY9612200.
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