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Signature of dynamical localization in the resonance width distribution
of wave-chaotic dielectric cavities
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We consider the effect of dynamical localization on the widths of the resonances in open wave-chaotic
dielectric cavities. We show that dynamical localization leads to a log-normal distribution of the resonance
widths which scales with the localization length in excellent agreement with the results of numerical calcula-
tions for open rough microcavities.

PACS number~s!: 05.45.Mt, 42.55.Sa, 42.25.2p
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The study of width distributions of finite quantum system
weakly coupled to a continuum is a subject of active exp
mental and theoretical investigation. The nature of the sp
trum of resonances depends strongly on the nature of
states of the finite system ‘‘in isolation.’’ For example,
those states are ergodically extended and structureless
the system then the resonances will show the behavior
pected from random matrix theory, the famous Port
Thomas distribution in the case of a single channel@1#. A
close relative of this resonance distribution has been m
sured in quantum dots in the Coulomb blockade regi
@2,3#. More recently it has been pointed out that optical ca
ties with partially or fully chaotic ray dynamics would hav
interesting resonance properties and efforts have been m
to characterize their distribution in various limits@4–6#. In a
geometry that is approximately translationally invariant
one direction the wave equation becomes a scalar equa
with a close formal analogy to the Schro¨dinger equation and
the physics of the resonance spectrum becomes essen
the same for the optical and quantum systems. We
henceforth consider cylindrical dielectric resonators that
translationally invariant along their axis, but can be d
formed in their cross section. The analog of the class
limit of the Schrödinger equation is the limit of ray optic
when the wavelength of the electromagnetic field is mu
shorter than the typical radius of the cavity,l!R0. We will
regularly use the term ‘‘quantum’’ to describe properties
the wave solutions that differ from the behavior of rays in t
same geometry. The motion of a light ray within the cavity
identical to that of a point mass in a classical billiard and
resulting bound states are the analog of the eigenstate
‘‘quantum billiards’’ @7#. However, unless the index of re
fraction, n, is taken infinite, none of these states are tr
bound, there always being some nonzero probability of
cape from the cavity. Moreover, in the case of a simple
electric cavity the escape probability is strongly depend
on the angle of incidence of the ray. In particular, ra
bouncing at the cavity’s boundary with an angle of inciden
x smaller than the critical anglexc5sin21(1/n) ~angles of
incidence are defined from the normal to the boundary! are
transmitted by refraction with high probability, while thos
with x.xc are trapped by total internal reflection, and c
escape only with low probability by tunneling~evanescent
leakage!. Semiclassically the~dimensionless! angular mo-
PRE 621063-651X/2000/62~2!/2078~7!/$15.00
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mentum of the ray in a circular cavity ism5nkR0sinx,
wherek52p/l is the wave vector~in vacuum! andR0 is the
radius of the cavity. Hence a ray with angular momentu
m.kR0 will be strongly trapped whereas one withm
,kR0 will rapidly escape. Correspondingly, resonant sta
with mean valueŝm&.kR0 will have small widths, whereas
those with mean values less thankR0 will have large widths,
i.e., there is a threshold valuemc5kR0 for strong escape in
angular momentum space. In an undeformed~circular! cav-
ity m is an integral of motion and there are many expon
tially long-lived ‘‘whispering gallery’’ resonances withm
.kR0.

For a generically deformed cavity angular momentum
not conserved, nor is there any other second constant of
tion beyond the energy@8#. Hence the angular momentum
can fluctuate. The scale of those fluctuations depends on
existence of Kolmogorov-Arnol’d-Moser tori in phase spac
which limit the diffusion in angle of incidence. Beyond som
critical value of the deformation these barriers are destro
and classical rays with initial angular momentam much
larger thanmc can now diffuse to arbitrarily low angula
momentum and escape by refraction@4#. As a result, even for
kR0@1 the width Gm of rays starting withm.mc is not
exponentially small, and it can be estimated from the d
tance to the critical value in angular momentum space:Gm
5D/(m2mc)

2. ~HereD is the effective diffusion coefficien
in phase space, which in principle can depend onm.! One
might then guess that a cavity with such chaotic ray dyna
ics will no longer support any high-Q resonances. However
this is not necessarily the case, due to the phenomeno
‘‘dynamical localization’’@9#. It is now well known that, just
as a random system exhibits exponential localization in r
space due to Anderson localization, the same kind of
structive interference can occur in a chaotic dynamical s
tem and suppress diffusion in the relevant phase space@10#.

The condition for the onset of dynamical localization
that the diffusion time across the system be longer than
Heisenberg time defined by the inverse level spacing of
cavity: tH;\D21. For longer times thantH , a wave packet
starts to ‘‘resolve’’ the discreteness of the spectrum and
spreading in angular momentum is suppressed. Based o
analogy with the kicked rotator@11#, the localization lengthj
is determined by the classical diffusion rateD, j;D. Con-
2078 ©2000 The American Physical Society



fo
a
re

ti

if

io
so
o
i-
un

ion
the

al,
the

t

of

ay
ally
las-

of
ical
ly
rep-
ed,
ain
er
lar

rties

w
y a

udy
d-
si-

ell
e
he
ial
tem,
al-

th

to
the
and
ing-

PRE 62 2079SIGNATURE OF DYNAMICAL LOCALIZATION IN TH E . . .
sider a state centered around an angular momentumm0 such
thatm02mc<j. In this case wave packets can escape be
their diffusion ceases and the classical picture is adequ
Two different statistical behaviors are possible in this
gime. If the escape is determined byslow diffusion to a
boundary where escape can occur, the level width statis
has been studied recently by several authors@12–14# and
they find characteristic power-law distributions. Here the d
fusion constant satisfiesL!D!L2, and it takes many colli-
sions to cross the available phase space~for the optical cavi-
ties the role of the system sizeL is played by 2nkR0, the
number of angular momentum states available!. When the
diffusion constant is larger,D;L2, the motion is ballistic in
the sense that the phase space is crossed in a few collis
this situation leads to the Porter-Thomas distribution of re
nance widths and the related distributions mentioned ab
@1,2,15,16#. However when dynamical localization dom
nates then the lifetime of a localized state centered aro
angular momentumm0 such thatm02mc@j becomes expo-

FIG. 1. ~Color! ~a! Intensity plot of a resonance withnkR0

550 in the rough cavity withk50.08, M515, andn52.5. Red
color corresponds to the maximum of the intensity, and blue to
minimum.~b! Intensity plot of a resonance withnkR05150 for the
same set of parameters as above.
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nentially longer than the corresponding classical diffus
time to the classical emission threshold. Thus one has
possibility of high-Q resonances of completely nonclassic
pseudorandom character, something not considered in
optics literature to our knowledge~except in a very recen
experiment in the microwave regime@17#!. It therefore be-
comes of interest to understand the statistical distribution
resonance widths in such a situation.

In the localized regimej/L!1, the angular momentum
components of wave functions decay exponentially aw
from their centers and one naturally expects exponenti
small average widths for states centered far above the c
sical emission thresholdm02mc.j. Recently No¨ckel and
Stone @4# compared the exact lifetimes of resonances
quadrupole-deformed microcavities with the mean class
diffusion time and found the lifetimes to be significant
longer in certain cases; they conjectured that these disc
ancies arose from incipient dynamical localization. Inde
dynamical localization has been shown to occur in cert
closed cavities@19,11#, and a very recent experimental pap
confirmed this phenomenon in microwave cavities of simi
shape to those studied below@17#. However, no detailed
study has been made of the statistical and scaling prope
of the resonance~eigenmode! widths in this regime. These
are the main topics of the current work. Below we will sho
that the dynamically localized regime is characterized b
very broad~log-normal! width distribution with scaling prop-
erties directly related to the system’s localization lengthj.
We stress that the resonance width distribution that we st
here is different from the survival probability that was stu
ied recently in the dynamically localized regime of a clas
cally chaotic open dynamical system@18#. The survival prob-
ability, which is defined as the time it takes a state with w
defined initial angular momentum~and thus not an eigenstat
of the rough cavity! to escape outside, is determined by t
quantum-mechanical evolution of a state with a given init
angular momentum over true resonances of the open sys
each of which has a finite width. Assuming that in the loc

e

FIG. 2. ~Color! Details of the wave intensity corresponding
the top resonance shown in Fig. 1. The intricate structure of
wave intensity is due to classically chaotic boundary scattering
makes the resonance clearly different from a standard whisper
gallery-like high-Q resonance.
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2080 PRE 62STARYKH, JACQUOD, NARIMANOV, AND STONE
ized regime the resonance width is exponentially small
resonances located far away from the absorbing bound
the survival probability is found to decay as 1/t for long
timest @18#. These results are consistent with ours below,
we find explicitly an exponential variation of the width wit
the distance from the escape threshold@see Eq.~11!#, but
involve a different quantity, measured in a different kind
experiment.

First, to illustrate the effect of dynamical localization o
the physical properties of the modes in the open cavity,
show in Fig. 1 the real-space structure of two modes o
deformed cylindrical microcavity defined according to t
model described immediately below. The two modes co
spond to exactly the same shape of the cavity, correspon
to fully ergodic classical ray dynamics, have the same av
age angular momentum̂m2&1/2'0.5nkR0, but differ in their
wave vector, and as a consequence~see below! differ in their
localization lengths. As a result one resonance is in the qu
tum diffusive regime and the other in the localized regim
The qualitative difference is immediately apparent; the d
fusive mode emits much more strongly and has a den
spatial structure due to the large angular momentum sp
in the state. The localized mode, on the other hand, em
weakly and appears to have a caustic similar to a reg
whispering gallery mode, but a closer look at its spa
structure shows that the pattern of nodes has an irreg
character entirely different from the usual whispering galle
modes of circular resonators, as can be seen in Fig. 2.

We now define the model corresponding to Figs. 1 and
We consider an optically inactive, cylindrical microcavi
with an index of refractionn.1. The cross section perpen
dicular to the cylinder’s axis is given by a circle perturbed
M harmonics of random amplitude21/l <al <1/l , R(f)
5R0@11( l 52

M al cos(l f)#. The average roughness of th

surface is defined ask̄5A^k2(f)&f, k(f)5(dR/df)/R0.
This model was introduced by Frahm and Shepelyansky@11#
with the condition of perfectly reflecting walls, and they r
ferred to it as theroughbilliard to contrast with the smoothe
quadrupolar deformations considered by No¨ckel and Stone
@4#. However, the spatial wavelength of the roughness is
assumed to be large compared to the wavelength of the r
nance. The advantage of a rough boundary is that the tra
tion to classical chaos is achieved with much smaller am
tude of deformation making it easier to explore the param
regime of fully chaotic classical motion and dynamically l
calized ‘‘quantum’’ behavior. As we shall see below, t
open rough billiard has scaling and statistical properties
sentially identical to those of a quasi-one-dimensional dis
dered system, whereas the quadrupole billiard does not.
the rough billiard the classical dynamics can be well appro
mated by a discrete map for which Chirikov’s overlap cri
rion @20# gives an estimate of the critical roughnessk̄c above
which the classical dynamics becomes fully chaotic ask̄c

;M 25/2. The two deformation parametersM and k̄ allow
one to reach a classically fully ergodic regime characteri
by a diffusion constant~averaged over angular momentum!

D5 4
3 (k̄nkR0)2 for k̄@k̄c and, quantum-mechanically, on

gets a localization lengthj;D @9# so that the dynamically
localized regime is determined byk̄2nkR0!1 @11#. Keeping
parameters of the cavity fixed and varyingkR0 one is able to
r
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access states with greatly different localization lengths.
We restrict ourselves to the simplest case of a T

polarized electric fieldE(r ) parallel to the cylinder axis for
which both the field and its derivative are continuous at
cavity’s boundary. This restriction is primarily for conve
nience; the TE modes obey a slightly different scalar eq
tion which can be treated in a similar manner. It should
mentioned, however, that semiconductor quantum casc
microcylinder lasers studied in@5# emit solely in the TM
mode due to a selection rule. Maxwell’s equations redu
then to a single scalarwave equation, c22] t

2E(r ,t)
5n2(r ,f)¹ r

2E(r ,t), where the refraction index satisfie
n(r )5n inside the cavity, andn(r )51 outside.

We use the approach in which the resonances width
wave vector are given by the imaginary part of the wa
vector of thequasiboundstates defined by the following
matching conditions. First we expand the electric field in t
angular momentum basis (r[ur u),

E~r ,t !5e2 ickt (
m52`

`

i mAm~kr !eimf, ~1!

where

Am5H amHm
1~nkr!1bmHm

2~nkr! if r<R~f!

gmHm
1~kr ! otherwise.

~2!

This expansion corresponds to the so-called Sieg
boundary conditions@21# in which the states have only a
outgoingcomponent at infinity@Hm

6(x) are Hankel functions
of the first and second type, respectively#. Such boundary
conditions cannot be satisfied for realk and are only satisfied
for discrete complexk. It can be shown that the imaginar
parts of thek values that satisfy Eq.~2! are the poles of the
true unitary ~on-shell! S matrix of the scattering problem
From the expansion coefficients in Eq.~2! we define vectors
a, b, and g. The fields inside and outside the cavity a
related by the continuity of the field and its derivative on t
boundary and~after integration around the boundary! one of
these equations can be used to eliminateg, leaving a linear
relation betweena and b. The matrix expressing this rela
tion we call S̃. Moreover, the regularity of the field at th
origin r 50 impliesa5b, and thus a secular equation for th
resonant values ofk is obtained of the form

S̃a5a. ~3!

We use the notation ‘‘S̃ matrix’’ because in the case of
closed billiard the matrix so defined is actually the unitaryS
matrix of the scattering problem of a wave incident outs
the impenetrable billiard@22,23#. In our case the matrix so
defined is nonunitary for anyn,` and for realk the eigen-
values ofS̃ have the forml r5exp@i(wr1idr)#, where bothw r
andd r.0 are real functions of momentumk. The subscriptr
numbers states in a deformed cavity where angular mom
tum is not conserved. Exact quantization of the cavity
solving Eq. ~3! exactly—impliesl r51, so that the exac
implementation of this procedure requires finding a comp
k5q2 ig such thatw r(q2 ig)5d r(q2 ig)50. The corre-
sponding resonance widthG r is then given byc timesg via
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the dispersion relationG r5cg. However, approximate
widths can be found by a much more efficient proced
which is extremely helpful if one wishes to study full distr
butions, as we do here. First, it is straightforward to sh
@24# that wheng is small, simply finding the complex eigen
phasesl r5exp@i(wr1idr)# for real k determines the imagi
nary part ofk on resonance by the relationg52d/w8 where
w8 is the derivative of the real part of the phase with resp
to momentum for realk. Moreover, since this derivative ca
be shown to be slowly varying on the scale of the le
spacingDk, it is not necessary even to quantize the real p
of the phase@i.e., to find the realk that makesw(k)52p
3 integer]. The functionw8 can be easily calculated for th
circular cylinder, and this relation and the assumption
slow variation of the derivative can be confirmed explici
~for the case whereg is small!. Therefore we can generat
large ensembles of widths simply by diagonalizing the m
trix S̃ for real k and extracting the imaginary phased, by
which means we generate;2nkR0 widths per diagonaliza-
tion. This procedure is motivated by the work of Doron a
Frischat, who noted that the statistical properties of clo
billiards changed little away from the exact quantization co
dition ~in their case it was the distribution of splittings o
semiclassically degenerate states! @25#. The linear relation
betweend r andg r has been independently proposed ear
by Hackenbroich@26# and demonstrated for the case of t
circle.

To best relate the localization properties of the eig
states, which apply to a closed cavity, to the distribution
widths in an open cavity, we employ a perturbative form
ism that was recently developed specifically to treat op
optical resonators@6# ~it is similar in spirit to well-known
quantum perturbative scattering approaches such asR-matrix
theory in the single-level approximation!. According to that
theory narrow resonance widthsG!D (D is the resonance
spacing! can be computed from the expectation value of
anti-Hermitian operatorV taken over eigenstatesua (0)& of
the matrixM, which describes some effective ‘‘closed ca
ity,’’

G5b0^a
(0)uVua (0)&5b0 (

m,m8
am

(0)* Vmm8am8
(0) . ~4!

Explicitly,

M5~J8J8!2~1/n!~J8H18!~H2H1!21~H2J!. ~5!

V is the anti-Hermitian part ofM, and the matrix element
(Z̄Z) are defined as

~ Z̄Z! l m5
i m2l

2p E dfZ̄l ~k!Zm~k! ei (m2l )f, ~6!

where Zm(k) and Z̄m(k) stand for eitherHm
6
„kR(f)…, the

Bessel function Jm„nkR(f)…, or their derivatives. The
coefficient b0 in Eq. ~4! depends only on the Hermitia
part H0 of M, i.e., it is determined by the propertie
of the ‘‘closed system,’’ b0

215^a (0)u]H0 /]kua (0)&
'(mam

(0)* (J8J9)mm8am8
(0) , and can be regarded as a norm

ization factor. An eigenstate localized at angular moment
m0@mc'kR0 will have exponentially small widthG. There-
e
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fore, for such a resonance in the semiclassical limitG!D,
and Eq.~4! is appropriate. More details of this formalism ca
be found in@6#.

For an exponentially localized state one generally has

uamu;expS 2
um2m0u

2j D . ~7!

We consider the regime of large localization lengthj

;k̄2k2R0
2@1. Since the rough billiard is classically chaoti

the phasesof the coefficientsam change rapidly with the
angular momentum, and it is natural to assume that its c
relation function satisfies

^a l 1m* a l & l 5dm,0̂ ua l u2& l , ~8!

where the average is performed over an angular momen
interval l P@m02dl /2,m01dl /2# such that 1!dl ,j.
This behavior is illustrated in the inset to Fig. 3 for on
typical set of cavity parameters, corroborating the validity
the assumption~8!.

As follows from Eq.~6! and the definition ofV, the matrix
elementsVmm8 in angular momentum representation vary
a scale ofdm;k̄kR0@1, and therefore we can replace th
productam* am8 in Eq. ~4! by its average valuêam* am8& over

the interval um2m8u;k̄kR0. Together with Eq.~8! this
leads to the diagonal approximation

^a0uVua0&' (
umu5kR0

nkR0

uamu2Vmm. ~9!

The matrix element

Vmm52
1

2n
@~J8H18!ml ~H2H1! l l 8

21
~H2J! l 8m2c.c.#

~10!

FIG. 3. Distribution of the inverse participation ratior for n

53, M515, and (nkR0 ,k̄)5(150,0.02) ~solid line!, (100,0.03)

~dashed line!, and (50,0.06)~long-dashed line!. k̄nkR has been
kept constant, which results in a stable average IPR^r&50.1
60.01. Inset: Normalized correlation function Eq.~8! for nkR0

5100 andk̄50.03.
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2082 PRE 62STARYKH, JACQUOD, NARIMANOV, AND STONE
includes both the refractive~classical! escape from the reso
nator ~for ul u,ul 8u,mc5kR0) and the ‘‘tunneling escape’
~corresponding to evanescent leakage@4#, for ul u,ul 8u
.mc). To evaluate the sum over angular momenta we
the stationary-phase-based technique developed in@27# in the
context of the calculation of level splittings in a rough b
liard. The ‘‘classical’’ refraction contribution is found to b

Gm0.mc

class '
k2R0

nj
expS 2

m02kR0

j D . ~11!

This result shows that an exponentially small width can
due to the exponentially small wave function compon
leaking outside the classically totally-internally-reflected
gion. To see if this process controls the lifetime we need
compare this result with the direct ‘‘tunneling escape’’ co
tribution to the lifetime. The latter process involves angu
momenta only above emission thresholdmc . For an esti-
mate, it is then sufficient to evaluate the linewidth of t
state abovemc in the circular cavity, which can be thought o
as a state with zero localization length. We find that
tunneling contribution is also exponentially small (n@1),

Gm0.mc

tunn 52~1/n!Im@Hm021
1 ~kR0!/Hm0

1 ~kR0!#

'exp@2Am0
22mc

212m0 ln~mc!

22m0 ln~m01Am0
22mc

2!#. ~12!

Competition between the classical escape@Eq. ~11!# and the
tunneling @Eq. ~12!# is strongest for (m02mc)/mc!1, i.e.,
when the width of the tunneling barrier is smallest. Comp
ing the two contributions in this region we find thatGclass

@G tunn for j@AkR0, andG tunn@Gclass in the opposite limit.
Restriction on the range ofj weakens as one moves to high
angular momentum, and for (m02mc)/mc;1 the classical
escape mechanism always dominates over the tunneling
The tunneling escape, therefore, is relevant only for v
small deformationsk!(kR0)23/4, which produce short lo-
calization length. Thus, the width of the states with ve
short ~essentially zero! localization length is determined b
the tunneling escape, but that of the more extended st
with j@1 by the classical emission from their exponentia
weak tails atmc5kR0.

Having established a relation between the width and
localization length of a corresponding closed cavity, the d
tribution of widths then follows from the distribution of lo
calization lengths. In one-dimensional~1D! and quasi-one-
dimensional disordered systems it is now well establis
that the distribution of the inverse localization length is ty
cally normally distributed around an average 1/j0 @28#.
Moreover Frahm and Shepelyansky have explicitly sho
@11# that the problem of the rough billiard maps onto a va
ant of the kicked rotor problem and hence to an ensembl
band random matrices~BRM! @30#, which also describe
quasi-1D disordered systems. Here the angular momen
index plays the role of the site coordinates in disorde
systems, with an ideal lead~the continuum! accessible at
mc5kR0. Collisions with the rough boundary correspond
random hopping between sites, which are at mostk̄nkR0
lattice spacings apart@11#. Once the critical angular momen
e

e
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e
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n
-
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tum, corresponding to the classical emission bordermc , is
reached, the wave packet escapes the system and nev
turns. Hence we may assume that the inverse localiza
length in our problem has an approximately normal distrib
tion around its mean~our ensemble here is of boundary r
alizations!,

P~j!;expS 2
~1/j21/j0!2

2s2 D . ~13!

Therefore, as follows from Eqs.~11! and ~13!, the reso-
nance width is distributed log-normally@31#,

P~G!d@ ln~G!#;expS 2
ln2~G/G0!

2s2~m02kR0!2D d@ ln~G!#,

~14!

where

ln~G0!52~m02kR0!/j0 ~15!

and the derivation is done in a leading logarithm approxim
tion, so that the preexponential factor in Eq.~11! is ne-
glected. This result is then very natural: the distribution
widths in open dynamically localized cavities is log-norm
for the resonances localized far from the classical emiss
thresholdm0@kR0. This is entirely analogous to the condu
tance distribution of localized chains, which will be log
normal for a fixed distance from the ends@28# ~see@29# for a
log-normal distribution of delay times/resonance width!.
We note that the relationship between dynamical localizat
and Anderson localization was first placed on firm footing
a seminal paper by Fishman, Grempel, and Prange@10#.

Equation~14! essentially relies on two assumptions: firs
Eq. ~8! that the phases of the wave function components
randomly distributed with no long-range correlations, an
second, that the eigenstates are exponentially localized
a normal distribution of localization lengths. We now test t
validity of these two assumptions for our rough microca
ties. The validity of Eq.~8! is confirmed by the sharp drop o
the correlation function^a l 1m* a l & l /^ua l u2& l for m.0,
which is clearly seen from the numerical results presente
the inset to Fig. 3. The localization properties are inve
gated by computing the distribution of the inverse particip
tion ratio ~IPR! defined asr5(muamu4/(muamu2. The IPR
measures the inverse number of effective eigenstate com
nents and thus allows one to distinguish between locali
and delocalized states. Generally, in the localized phase^r&
is independent of the system size since at mostj!L sites
contribute to the sum and̂r&;j21. In the other limit of
ergodic states, all sites contribute equally and^r&;L21 in
this case. Between these two limits, a variety of behavi
may occur depending on the inner structure of the eig
states. In Fig. 3 we show IPR distributions for three differe
parameter sets corresponding to the same average loca
tion lengthj;(k̄nkR0)2[9. The three distributions are in
deed stable under parameter variations whenj is kept con-
stant, and this shows that not only the average IP
localization length@11# but also the full IPR distribution
obey a one-parameter scaling withk̄nkR. The situation is
very similar to the one studied in Ref.@30# for BRM with a
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bandwidth 1!b'A2j, for which the IPR distribution was
analytically computed. Similar deviations as those seen
Fig. 3 are also present for BRM with not too large ban
widths @30#, so that these numerical results confirm the u
versality of the dynamically localized regime, quite ana
gous to quasi-one-dimensional disordered systems. We
illustrate this exponential localization by showing one typic
state in the inset to Fig. 4.

Having tested the validity of the main assumptions
which Eq.~14! relies, we present in Fig. 4 the distribution
widths for the classically chaotic, dynamically localized r
gime of the open rough microcavity. The distributions sho
correspond to resonances centered in intervals of w
dm/(nkR0)50.1 around angular momentam0 /(nkR0)
50.5, 0.6, 0.7, and 0.8, well above the classical thresh
mc /(nkR0)'0.29. Clearly, the distributions are log-norm
and their widths increase as one moves away from the c
sical emission bordermc5kR0. Furthermore, the agreeme
with Eq. ~14! is quantitatively confirmed by a direct fit of th
broadest of these distributions~see dashed line on Fig. 4!.

We expect by analogy to the scaling theory of localizat
that the logarithmic average of the widths will exhibit a un
versal scaling behavior. This expectation is confirmed by
data shown in Fig. 5 where we present numerical results
the scaling obeyed by lnG0. Log-averages for different pa
rameter sets have been computed for at least 2000 width
narrow energy windowsdm/(nkR0)50.2 around given an-
gular momentam0.mc for different values of indices o
refraction 1.5<n<4, wavelengths 75<nkR0<180, and
roughnessesk̄. All presented results are in the localized r
gimesj,m02mc and the corresponding curves have be
put on top of each other by a one-parameter scaling. Figu
demonstrates the validity of the linear relation~15!, as is
indicated by the straight line. The exact parameter dep
dence of the scaling can be deduced from analogy to

FIG. 4. Distribution of resonance widths forn53.5, nkR

'110, k̄50.018, andM515 for states with average angular m
mentumm0 /(nkR0)50.5 ~circles!, 0.6 ~squares!, 0.7 ~diamonds!,
and 0.8~triangles!. This last distribution is fitted according to Eq
~14! with s'0.04 ~dashed line!. The emission border is atmc

'0.29nkR. Each distribution is constructed from 8000 to 13 0
widths obtained from 1013 boundary realizations of the rough c
ity. Inset: Typical localized eigenstate for the same parameter
The dashed line indicates an exponential decay corresponding
localization length ofj516.
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scaling theory of localization. In this case the Thouless c
ductanceg5G/De is the scaling quantity~or its logarithm in
the localized regime!; hereG is the resonance width, andDe
is the mean level spacing. In our caseG5cg ~whereg is the
width in momentum space!, but De differs from the value in
the corresponding Schro¨dinger equation, due to the differen
dispersion relation for the wave equation. Taking this in
account one finds that the analog of the dimensionless c
ductance isg;n2kcgR0

2, and it is the logarithm of this di-
mensionless quantity that we plot against (m02kR)/j* . Fig-
ure 5 allows us to identify the scaling parameterj* with the
localization length up to a free parameter. That this scal
holds for the rough cavity demonstrates that the localizat
length is independent of the angular momentum, as is
pected for a homogeneously diffusive system. The situa
is fundamentally different for a quadrupolar cavity (M52)
as can be seen in Fig. 5~see black diamonds!. Obviously,
one scaling parameter is not sufficient to bring the cor
sponding curve on top of the other ones satisfying Eq.~15!.
This indicates an angular momentum dependent diffus
constant, which directly follows from the effective local ma
derived for this particular case@32#. Furthermore, in the re-
gime corresponding to the data presented for the quadrup
deformation, small invariant torii and islands of stability st
survive, resulting in strongly localized wave functions wi
short localization lengths determined essentially by the s
of the remaining classical structures. Because of this,
unlike the situation in the rough cavity, the width of suc
states is determined by the tunneling escape@see the discus-
sion after Eq.~12!#. Therefore a clean demonstration of e
ponential dynamical localization is difficult in the quadrup
lar billiard.

Further confirmation that the extracted scaling parame
is indeed related to the system’s localization properties
given in the inset to Fig. 5 wherej* is plotted against the
diffusion constantD5(k̄nkR0)2 as derived from the effec
tive rough map@11#. This inset gives unambiguous confi

-
et.

a

FIG. 5. Scaling of the average logarithm of resonance wi
^ ln G0& vs (m02kR)/j* for parameters 95,nkR,195, 2.5,n

,5, 0.008,k̄,0.03, and 10,M,30. Open symbols correspon
to the rough deformation for which a one-parameter scaling ex
The full diamonds correspond to a quadrupolar billiard (M52) for
which the diffusion is affected by classical invariant structures
phase space. Inset: Localization length as extracted from the sc
shown on the main panel.
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mation of the above derived relation between localizat
length and log-averaged width. Note thatj* has a linear
dependence on the diffusion constantD even at smallD
where the relationj;D does not hold. For largeD, how-
ever, the relationj* ;j holds @33#.

To summarize, we have presented a study of the w
distributions of a quantum-chaotic open system in the
namically localized regime. This study was greatly expedi
by the linear relation between the complex phases of
eigenvalues of the nonunitary scattering matrix away fr
exact quantization and the imaginary part of the correspo
ing exactly quantized complex wave vector, which has
lowed us to generate sufficiently large width statistics
demonstrate the log-normal form of their distribution. T
width distribution has been derived analytically assumin
normal distribution of inverse localization lengths and pha
randomness of the wave functions, using a recently de
oped semiclassical method, the usefulness of which is
ett
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further demonstrated@6#, and confirmed numerically. The
log-normal distribution is a hallmark of localized disorder
systems and hence our results deepen the analogy bet
dynamical and Anderson localization and point out an op
cal observable that can in principle be measured to dem
strate this distribution. The possibility of high-Q resonances
in deformed rough cavities~which are nonetheless smoo
on the scale of the wavelength! should be of interest in op
tical studies of scattering from small particles; however, th
random nature seems to make such resonances unsuitab
applications.
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